Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
MOCVD Iron Oxide Nanoparticle Generation not Only for Follow-Up Inalation Exposure Experiments.
Moravec, Pavel ; Schwarz, Jaroslav ; Vodička, Petr ; Kupčík, Jaroslav ; Švehla, Jaroslav
Iron oxide nanoparticles (NPs) are industrially produced and commercially available and they are also frequently emitted into the environment by iron making plants. In the human body, iron is maintained at homeostatic fairly low level. However, freshly generated iron oxide NPs cause febrile and inflammatory response known as metal fume fever, but the potential in vivo consequences of inhalation of iron oxide NPs from the atmosphere has not yet been investigated. An overview of recent studies evaluating iron oxide NPs cytotoxicity, genotoxicity, developmental toxicity and neurotoxicity was presented by Valdiglesias et al. (2015). Toxicity of iron oxide NPs has been studied both in vitro and in vivo. Exposure chamber for the whole body inhalation experiments with small laboratory animals was constructed at the Institute of Analytical Chemistry of the CAS (Večeřa et al., 2011) and some methods of NPs generation for these experiments were already tested in our laboratory (Moravec et al., 2015. Moravec et al., 2016). In this study we tested a method of long lasting generation of iron oxide NPs by pyrolysis and oxidation of ironIII acetylacetonate (FeAA3).
Plný tet: SKMBT_C22018110212483 - Stáhnout plný textPDF
Plný text: content.csg - Stáhnout plný textPDF
Nanoparticle Generation for Follow-Up Exposure Studies by Oxidation of Copper Acetylacetonate.
Moravec, Pavel ; Schwarz, Jaroslav ; Vodička, Petr ; Švehla, Jaroslav ; Kupčík, Jaroslav
The exposure to nanoparticles (NPs) represents a severe problem to human health, because they are becoming more widely used and their number of applications continually increases. Particles containing copper are emitted from smelters, iron foundries, power stations and municipal incinerators (WHO, 1998), as well as from brake linings during braking, Kukutschova et al. (2011). Copper and copper oxide NPs are frequently used as catalysts, heat transfer fluids in machine tools (Kim et al., 2011), inks, anode material in lithium-ion batteries (Guo et al., 2002) and many others. Even though CuO NPs were found highly toxic, Karlsson et al. (2008) and it is likely that NPs enter human body via respiratory tract, the inhalation exposure experiments of CuO NPs with laboratory animals are still rather rare (Pettibone et al., 2008 and Lebedova et al., 2016). The exposure chamber for long lasting inhalation experiments was constructed at the Institute of Analytical Chemistry of the CAS (Večeřa et al., 2011) and some methods of NPs generation for these experiments were already tested in our laboratory (Moravec et al., 2015 and Moravec et al., 2016a). The generation of Cu/Cu2O NPs by thermal decomposition of copper acetylacetonate (CuAA) was reported by Moravec et al. (2016b) and here we present the results of long lasting generation of NPs by oxidation of CuAA.
Plný tet: SKMBT_C22017103113062 - Stáhnout plný textPDF
Plný text: content.csg - Stáhnout plný textPDF

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.